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Resveratrol promotes apoptosis and G2/M cell cycle 
arrest of fibroblast-like synoviocytes in rheumatoid 
arthritis through regulation of autophagy and  
the serine-threonine kinase-p53 axis
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A b s t r a c t

Introduction: Resveratrol, a polyphenol extracted from many plant species, 
has emerged as a promising pro-apoptotic agent in various cancer cells. How-
ever, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like 
synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood.  
The study was aimed at elucidating the role of resveratrol in cell prolifera-
tion and apoptosis of RA-FLS and the underlying molecular mechanism.
Material and methods: Cultured RA-FLSs were subjected to tumour necrosis 
factor α (TNF-α). The cell proliferation was measured by Cell Counting Kit-
8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow 
cytometry. The levels of apoptosis or autophagy or cell cycle-related protein 
were detected by immunoblot analysis.
Results: In our study, we confirmed that resveratrol reversed TNF-α mediated 
cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M 
stage and reduced the ratio of S phase cells through upregulation of p53 
and consequently led to apoptotic cell death. Quite interestingly, we found 
that resveratrol reversed TNF-α-induced autophagy. Inhibition of autophagy 
by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF-α 
mediated cell survival and promoted cell apoptosis. However, the autophagy 
inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy 
and cell proliferation. Mechanistic studies revealed that resveratrol inhibit-
ed the activation of the phosphoinositide 3-kinases/serine-threonine kinase 
(PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 
or resveratrol increased the expression of p53 and decreased the expression 
of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest.
Conclusions: Our preliminary study indicated that resveratrol may suppress 
RA-FLS cell survival and promote apoptosis at least partly through regulation 
of autophagy and the AKT-p53 axis.
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Introduction

Rheumatoid arthritis (RA) is one of the most common inflammatory 
autoimmune diseases characterised by synovial hyperplasia and chronic 
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joint inflammation, which lead to adjacent carti-
lage destruction and progressive bone erosion [1].  
Tumour-like hyperplasia of fibroblast-like synov-
iocytes (FLS) has been well demonstrated as a ma-
jor role in the pathological process of RA [2]. Tu-
mour necrosis factor α (TNF-α) is regarded as one 
of the most central pro-inflammatory cytokines 
that significantly triggers the aberrant growth 
of fibroblast-like synoviocytes in rheumatoid ar-
thritis (RA-FLS) and synovial inflammation [3].  
Although treatment with disease-modifying an-
tirheumatic  drugs and biological agents have 
significantly improved the prognosis of patients, 
only a few patients achieve remission, and some 
patients are intolerant to such drugs [4, 5]. There-
fore, it is important to explore new therapeutic 
targets and drugs for RA.

Resveratrol, a trans-3,4’,5-trihydroxystilbene, is 
a natural polyphenol compound found in various 
plants, vegetables, and fruits. Resveratrol has been 
reported to have a cytotoxic effect on tumour cells 
without affecting normal cells and has emerged 
as a promising antitumour agent [6]. Numerous 
studies have verified that resveratrol has a re-
markable efficacy in blocking tumour progression 
and metastasis [7, 8]. p53 is a tumour suppressor 
and plays a pivotal role in preventing tumour de-
velopment by inducing cell cycle arrest at G0/G1 
or G2/M stage and/or promoting cell apoptosis 
in response to genotoxic stress [9, 10]. Evidence 
shows that resveratrol blocked cell cycle at G0/G1 
or G2/M phase and induced cancer cell apoptosis 
through upregulation and phosphorylation of p53 
[11–13]. Moreover, in recent years, resveratrol has 
been reported to have an impact on the cell surviv-
al by regulating the expression of autophagy-relat-
ed proteins and the autophagy signalling pathway 
[14, 15]. Although great progress has been made 
in understanding the underlying molecular mech-
anisms of resveratrol in inhibiting cell proliferation 
and inducing cell apoptosis in various melanoma 
cells, the role of resveratrol in RA-FLS cell prolifer-
ation and apoptosis and its underlying molecular 
mechanisms have not been completely elucidated. 

In the present study, we aimed to investigate 
the role of resveratrol in TNF-α-induced autoph-
agy and tumour-like proliferation of RA-FLS. We 
also explore whether resveratrol could inhibit 
TNF-α-induced cell proliferation or promote cell 
apoptosis via activation of p53 and the underly-
ing mechanism by which resveratrol regulates the 
p53 pathway.

Material and methods

Reagents and antibodies

Reagents and antibodies were obtained from the 
following sources: recombinant TNF-α, resveratrol 

(Res),3-Methyladenine (3-MA), phosphoinositide 
3-kinases (PI3K) inhibitor LY294002, chloroquine 
(CQ), rapamycin (RAPA), and dimethyl sulphox-
ide were purchased from Sigma-Aldrich (St. Lou-
is, MO). Anti-Beclin-1, anti-LC3, anti-PI3K, anti- 
phospho-Akt, anti-Akt, anti-caspase3, anti-p53,  
anti-cycle protein and anti-β-actin were from 
Cell Signaling Technology (Beverly, MA); Horse-
radish peroxidase (HRP) conjugated anti-rabbit 
IgG, and HRP-conjugated anti-mouse IgG were 
from Cell Signal Technology (Beverly, MA). Be-
clin-1-siRNA(5’-CAGUUACAGAUGGAGCUAATT-3’) 
and control scrambled siRNA (5’-CUUACGCU-
GAGUACUUCGATT-3’) were obtained from GENE 
(Shanghai, China). Neon™ Transfection System, 
foetal bovine serum (FBS), Dulbecco’s modified 
Eagle’s medium (DMEM), and other materials 
for cell culture were from Invitrogen (Karlsruhe, 
Germany). 

Cell culture 

Synovial tissues were obtained from 6 active 
RA patients undergoing knee joint synovectomy 
or replacement (5 women, 1 man, aged 55–72 
years). All patients were diagnosed according to 
the revised criteria of the American College of 
Rheumatology [16]. The study was approved by 
the Ethics Committee of XiangYa Second Hospital, 
Central South University (Hunan, China), and all 
patients provided written informed consent (eth-
ical batch number: 2017-LS-S036). Fibroblast-like 
synoviocytes (FLS) were isolated as previously 
reported [17]. Cells were cultured in DMEM with 
15% FBS under an atmosphere of 5% CO2 and 
95% air at 37°C. Cells from passages 2 to 6 were 
used in the study. 

Cell treatment 

Fibroblast-like synoviocytes in RA were grown 
to approximately 80% confluence and subjected 
to serum-deprivation for 24 h before experimental 
manipulation. Cells were treated with resveratrol 
or autophagy inhibitors or autophagy inducer or 
PI3K inhibitor LY294002 before TNF-α exposure. 
After 24-hour incubation, cells were collected for 
further analysis.

siRNA transfection

Beclin-siRNA and control scrambled siRNA were 
transfected into RA-FLS at 80% confluent using  
a Neon™ Transfection System. Briefly, confluent 
cells were trypsinised and resuspended in resus-
pension buffer at a density of 2 × 105 cells per 10 μl  
of solution; 50 nM Beclin-siRNA and control 
scrambled siRNA were added separately. Cells 
were transfected by electroporation according to 
the manufacturer’s instructions.
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Analysis of cell proliferation

A Cell Counting Kit-8 (CCK-8) assay kit was used 
to determine the cell viability according to the 
manufacturer’s instructions. 10 μl CCK-8 reagent 
was added to each well and the cells were incu-
bated for 1 h at 37°C and 5% CO

2. The absorbance 
of optical density was measured at 450 nm.

Flow cytometry

The rate of cell apoptosis and cell cycle of FLS  
were assessed by flow cytometry (fluorescence-ac-
tivated cell sorting). In brief, FLS cells suspension 
were washed, trypsinised, and collected by cen-
trifugation, and then stained with Annexin V-FITC 
and propidium iodide (PI) by using the cell apop-
tosis detection kit. The percentage of apoptotic 
cells and the proportions of cells in G0-G1, S, and 
G2/M phase were determined by flow cytometric 
analysis.

Western blotting

Total protein was extracted from RA-FLS using 
lysis buffer containing protease inhibitors. And 
all samples were separated by 10% SDS-PAGE 
and transferred onto PVDF membranes. The blots 
were incubated with specific antibodies against 
Beclin-1, LC3, PI3K, serine-threonine kinase (AKT), 
p-AKT, cycle protein (cyclin B1), p53, and cleaved-
caspase3 or β-actin, respectively. Expression of 
specific proteins was detected using an enhanced 
chemiluminescence system, and densitometric 
analysis was performed as previous described. 

Statistical analysis

All experiments were repeated at least three 
times. The distribution of the statistical data was 
identified by Kolmogorov-Smirnov (K–S) test and 
the graphical assessment of normality. All data 
conformed to normal distribution and were ex-
pressed as mean ± standard deviation. Statistical 
analysis was performed with Student’s t-test and 
one-way analysis of variance, and p < 0.05 was 
considered statistically significant.

Results

Resveratrol reversed tumour necrosis 
factor α-mediated cell proliferation and 
promoted cell apoptosis in fibroblast-like 
synoviocytes in rheumatoid arthritis cells

To address the role of resveratrol in RA synovi-
al fibroblast proliferation and apoptosis, RA-FLSs 
were treated with 50 μM resveratrol 1 h before 
exposure to TNF-α (10 ng/ml). Cell viability and 
the rate of cell apoptosis or cell cycle of RA-FLSs 
were determined by CCK-8 and flow cytometric 

analysis, respectively. As shown in Figure 1, cell 
viability was significantly increased after TNF-α 
incubation for 48 h (115.33%) compared with 
the control group (100%). Notably, treatment with 
resveratrol effectively reversed TNF-α-induced cell 
proliferation (100.69%). In addition, the rate of cell 
apoptosis was similar between the control group 
(8.33%) and the TNF-α group (10.78%). However, 
resveratrol treatment could augment cell apopto-
sis (29.08%) compared with the TNF-α group. Our 
data indicate that resveratrol could suppress cell 
survival and trigger apoptosis in RA-FLS.

Resveratrol promoted cell apoptosis by 
regulation of autophagy flux

There is considerable evidence demonstrating 
that autophagy plays a dual role in either promot-
ing cell survival or triggering cell death [18]. To elu-
cidate the effect of resveratrol on autophagy flux, 
we treated cells with 50 μM resveratrol. To ascer-
tain whether resveratrol inhibited cell survival and 
promoted cell apoptosis by regulation of autopha-
gy flux, cells were treated with autophagy inhibi-
tor 3-MA (10mM) or CQ (50 μM) or Beclin-1 siRNA 
(50nM) or autophagy inducer RAPA (10nM) before 
exposure to TNF-α (10 ng/ml). The ratio of cell pro-
liferation and apoptosis were determined by CCK-8 
assay and flow cytometry kit separately. In the pres-
ent study, our data clearly showed that resveratrol 
downregulated the expression of autophagy-relat-
ed protein Beclin-1 and attenuated the TNF-α-in-
duced LC3-I to LC3-II conversion, while increasing 
the expression of cleaved-caspase 3 (Figures 2 A 
and B). Inhibition of autophagy by resveratrol or 
autophagy inhibitors (3-MA and CQ) or Beclin-1 
siRNA significantly increased the percentage of cell 
apoptosis and suppressed cell survival compared 
to the TNF-α group (Figures 2 C–G). However, au-
tophagy inducer RAPA partly reversed the effect of 
resveratrol on cell autophagy and cell survival (Fig- 
ures 2 H–I). Taken together, these findings suggest 
that TNF-α-induced autophagy plays an important 
role in TNF-α-induced cell apoptosis resistance, and 
resveratrol suppressed cell proliferation and pro-
moted cell apoptosis at least partly through regula-
tion of Beclin-1-related autophagy pathway.

Resveratrol inhibited tumour necrosis 
factor α induced cell proliferation by 
regulating p53 and cell cycle in fibroblast-
like synoviocytes in rheumatoid arthritis

Ample evidence demonstrated that tumour sup-
pressor protein p53 was involved in the RA patho-
logical process [3, 19, 20]. However, whether p53 
is involved in resveratrol-induced cell apoptosis of 
synovial fibroblasts is still unknown. In this study, 
the level of p53 and cyclin B1 and the ratio of cells 
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in different cell cycle stage after resveratrol treat-
ment were evaluated by immunoblotting and flow 
cytometry methods, respectively. Our data showed 
that resveratrol upregulated the expression of p53 
level and downregulated the cell cycle protein cy-
clin B1 level compared with TNF-α-alone group 
(Figures 3 A and B). Meanwhile, resveratrol could 
block cell cycle arrest at the G2/M phase, and the 
ratio of cells in S phase was obviously decreased  
(Figures 3 C and D). These findings revealed that 
resveratrol rescued RA-FLS cells from TNF-α-induced 
proliferation by upregulation of p53 and downregu-
lation of cell cycle protein cyclin B1, which further 
led to cells stagnated at the G2/M phase.

Resveratrol-induced cell cycle stagnated at 
G2/M phase by regulation of the serine-
threonine kinase-p53 axis in fibroblast-like 
synoviocytes in rheumatoid arthritis

To further elucidate the underlying molecular 
mechanism by which resveratrol inhibits TNF-α-
induced cell survival in RA synovial fibroblasts, 
the effect of resveratrol on the expression of AKT 

and phosphorylation of p-AKT was determined by 
western blot. Compared with the control group, 
TNF-α increased the expression of p-AKT and AKT 
in RA-FLS. However, treatment with resveratrol 
abolished  the  effect  of  TNF-α. Next, we investi-
gated the effect of PI3K inhibitor LY294002 on the 
cell viability and the expression of cell cycle related 
proteins (p53 and cyclin B1). As shown in Figure 3,  
compared with TNF-α alone group, PI3K inhibitor 
LY294002 remarkably reduced the cell viability. In-
terestingly, we found that, compared with TNF-α 
group, resveratrol and PI3K inhibitor LY294002 
treatment upregulated the expression of p53 and 
downregulated the expression of cyclin B1, fur-
ther blocked cell  cycle arrest at the G2/M phase, 
and decreased the ratio of S phase cells (Figure 3). 
Taken together, all these results suggest that res-
veratrol may induce cell arrest at the G2/M phase 
partly through regulation of the AKT/p53 axis. 

Discussion 

In this study, we demonstrated that resveratrol 
can effectively inhibit cell proliferation and pro-

Figure 1. Effects of resveratrol on cell apoptosis and cell proliferation in fibroblast-like synoviocytes in rheumatoid 
arthritis (RA-FLS) cells induced by tumor necrosis factor α (TNF-α). A – Cell proliferation was detected by Cell 
Counting Kit-8 method. Quantified histograms of cell viability of RA-FLS cells in different groups are shown in Fig- 
ure 1 A. B – Apoptosis cells were evaluated by flow cytometry using annexin V/propidium iodide staining. Quan-
tified histograms of apoptosis RA-FLS cells in different groups are shown in Figure 1 B. C – Representative images 
showed resveratrol treatment could augment celi apoptosis compared with the cells treated with TNF-α alone. 
Data are expressed as mean ± SEM of separate experiments performed in triplicate

*p < 0.05 compared with control group. #p < 0.05 compared with TNF-α group.
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Figure 2. Resveratrol inhibited tumour necrosis factor α (TNF-α) induced cell proliferation and promoted cell apop-
tosis by regulation of autophagy flux in fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) cells. A – The 
effect of resveratrol on the expression of Beclin-1, LC3-I, LC3-II, and cleaved-caspase 3 were assessed by western 
blot method. B – Protein expression levels of the indicated proteins were quantitatively analysed by densitometry 
and normalised with β-actin. C – Apoptosis cells were evaluated by flow cytometry using annexin V/propidium-
iodide (PI) staining. D – Quantified histograms of apoptosis RA-FLS cells in different groups. E – Cell proliferation 
was detected by Cell Counting Kit-8 method. F – The effect of knockdown of Beclin-1 expression on autophagy and 
apoptosis. G – The effect of knockdown of Beclin-1 expression on cell proliferation

*p < 0.05 compared with control group. #p < 0.05 compared with TNF-α group. &p < 0.05 compared with Res + TNF-α group.
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Figure 2. Cont. H – The effect of resveratrol on the expression of Beclin-1, LC3-II, and cleaved-caspase 3 was re-
versed by autophagy inducer rapamycin (RAPA). I – The effect of resveratrol on cell proliferation was reversed by 
autophagy inducer RAPA. Data are expressed as mean ± SEM of 3 independent experiments
p < 0.05 compared with control group. #p < 0.05 compared with TNF-α group. &p < 0.05 compared with Res +TNF-α group.
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mote cell apoptosis by regulation of autophagy 
flux in RA-FLS. Simultaneously, resveratrol reversed 
TNF-α-induced synovial fibroblasts proliferation 
by upregulation of p53. Moreover, resveratrol and 
PI3K inhibitor (LY294002) treatment concurrent-
ly decreased the expression of p-AKT and AKT 
and downregulated the expression of cyclin B1, 
and further blocked cell cycle arrest at the G2/M 
phase. Our findings indicate that resveratrol abol-
ishes the promotive effect of TNF-α on cell prolif-
eration in RA-FLS by regulation of autophagy and 
cell cycle. Furthermore, as summarised in Figure 4,  
resveratrol suppresses cell survival and triggers 
cell apoptosis, at least in part, through downregu-
lation of autophagy and the mechanism involved 
in PI3K/AKT pathway-mediated upregulation of 
p53 expression and downregulation of cyclin B1.

Numerous previous studies have demonstrated 
that resveratrol has antioxidant, anticancerogenic, 
and immunomodulatory properties. It is well doc-
umented that resveratrol has remarkable efficacy 
in inhibiting cell proliferation and promotes cell 
apoptosis in various tumour cells [21–23]. How-
ever, the role of resveratrol in regulating TNF-α-in-
duced tumour-like growth of synovial fibroblasts 
and its underlying mechanisms have not been ful-
ly illustrated. Autophagy is an evolutionarily con-
served degradative process involved in clearance 
or turnover of misfolded proteins and damaged 
organelles. Autophagy is thought to be involved in 
a variety of pathological and physiological events. 
Ample evidence has clarified that autophagy plays 
a central role in cell survival, cell death, and in-
tracellular homeostasis [24–26]. Recent studies 
suggest autophagy is a double-edged sword in 
tumourigenesis and metastasis. Autophagy can 
serve as a pro-survival or pro-death stress response 

in different conditions [27–29]. Recent evidence 
has shown that autophagy is involved in various 
immune processes and plays an important role in 
regulating the release of inflammatory cytokines 
and the pathological process of bone destruction 
in RA [30, 31]. Our previous study showed that 
the autophagy inhibitors 3-MA and CQ abolished 
the effect of TNF-α-mediated apoptosis resistance 
in synovial fibroblasts [16]. However, it has never 
been investigated whether autophagy is involved 
in the mechanism of resveratrol-mediated syno-
vial fibroblast apoptosis. In the present study, our 
findings showed that resveratrol treatment pre-
vented TNF-α-induced autophagy by downreg-
ulation of the expression of Beclin-1 and LC3-II 
in RA-FLS. Autophagy pharmacological inhibitors 
3-MA and CQ or knockdown of the expression 
of Beclin-1 could reverse TNF-α-induced cell pro-
liferation and increase the expression of cleaved 
caspase 3 level and the percentage of cell apop-
tosis. Autophagy pharmacological inducer RAPA 
could partly reverse the effect of resveratrol on 
cell proliferation and apoptosis. Taken together, all 
these data suggest that resveratrol could inhibit 
TNF-α-induced cell proliferation and promote cell 
apoptosis at least partly through downregulation 
of Beclin-1, further inhibiting TNF-α-induced auto-
phagy in RA-FLS.

p53, a tumour-suppressor protein, plays a cen-
tral role in the induction of cell cycle arrest and cell 
apoptosis in response to diverse cellular stimuli. 
Accumulating evidence has demonstrated that 
p53 plays a crucial role in RA-FLS cell apoptosis  
[3, 20, 32]. p53 signalling pathway has become  
a promising target in the treatment of RA. In re-
cent years, resveratrol has been demonstrated to 
trigger cell apoptosis in certain cancer types by 
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Figure 3. Effects of resveratrol or phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) on the phosphoinositide 
3-kinase/serine-threonine kinase (PI3K/AKT) pathway and cell cycle in fibroblast-like synoviocytes in rheumatoid 
arthritis cells treatment with tumour necrosis factor α (TNF-α). A – The expression of p-AKT, AKT, p53, and cell 
cycle-related cycle protein were detected by western blot in different groups. B – Protein expression levels of the 
indicated proteins were quantitatively analysed by densitometry and normaliesd with β-actin. C – Cell cycle was 
detected by flow cytometry method
p < 0.05 compared with control group. #p < 0.05 compared with TNF-α group.
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upregulation of p53 [33, 34]. In the present study, 
we hypothesised that resveratrol, a natural poly-
phenol compound, could induce cell apoptosis in  
a p53-dependent manner in RA-FLS. Consis-
tent with this hypothesis, our data showed that 
resveratrol obviously upregulated tumour sup-
pressor protein p53 and downregulated cell cy-
cle-related protein cyclin B1 compared with the 
TNF-α-alone group, which further led to cell cycle 
stagnation at the G2/M phase, and the ratio of 
cells in S phase was obviously reduced. Our data 
indicated that resveratrol may regulate p53 and 
cell cycle in RA-FLS. 

Additionally, we found that TNF-α exposure in-
creased AKT and p-AKT levels in RA-FLS cells com-
pared to controls. However, upon treatment with 
resveratrol or PI3K inhibitor LY294002, the expres-
sion of p-AKT and AKT was obviously decreased, 
which further led to upregulation of p53 and down-
regulation of cyclin B1, resulting in cells arrested at 
G2/M stage, and the ratio of cells in the S phase 
was decreased. Taken together, these findings 
suggested that resveratrol suppressed RA-FLS cell 
survival and promoted cell apoptosis partly through 
the AKT-p53-cyclin B1 axis. Due to the small num-
ber of patients (n = 6) in the present study, the re-
sults require confirmation in further research.

In conclusion, our preliminary study demon-
strates for the first time that resveratrol plays 
an important role in abolishing the effect of 
TNF-α-mediated apoptosis resistance in RA synovi-
al fibroblasts. Resveratrol reversed TNF-α-induced 
cell survival and triggered cell apoptosis in RA-FLS 
at least partly through downregulation of Beclin-1 
expression and inhibition ohe f tp53-cycin B1 axis, 
which sheds light on new therapies for RA. 
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